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Young diagrams

Let us write the integer k as follows:

k = π (1) + π (2) + ...+ π (n) ,

with π (i) ≥ 0, π (i) ≥ π (i + 1) . We call this function π a partition
of k into (at most) n parts. Let Yn denote the set of all partitions
π-s of arbitrary integers. They are called Young diagrams with at
most n columns. We call k to be the volume of the diagram π.
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Young diagrams

Let gk be the number of partitions π of k. The generation function
of the sequence gk is given by:

Gn (t) =
n∏

l=1

1

1− t l
.
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Young diagrams

Indeed,
n∏

l=1

1

1− t l
=

= (1 + t + t2 + t3 + ...)(1 + t2 + t4 + ...)(1 + t3 + t6 + ...)...

(1 + tn + t2n + t3n + ...).
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3D Young diagrams (Plane partitions)

Consider now the plane partitions, sitting over rectangle n ×m.

Senya Shlosman PCA 2024



Senya Shlosman PCA 2024



3D Young diagrams (Plane partitions)

Let now gk be the number of plane partitions of volume k , sitting
over rectangle n ×m. The generation function of the sequence gk
is given by the Mac-Mahon formula:

Gn×m (t) =
n∏

l=1

m∏
s=1

1

1− t l+s−1
.

(The sum l + s − 1 is the hook length of the cell (l , s).)
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The hook length

Senya Shlosman PCA 2024



Young diagrams

There is a natural map from the set Πn,m of plane partitions sitting
over rectangle n ×m, onto the Young diagrams Ynm.
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Young diagrams

There is a natural map from the set Pn,m of plane partitions sitting
over rectangle n ×m, onto the Young diagrams Ynm.
How about the inverse map?
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Pedestals

The rectangle n ×m has its natural partial order. Let us fix some
linear order P on it, which extends the partial order. It is just a
map from the rectangle n ×m onto the segment [1, nm]. And let
Q be any other linear order on it.
We call the node Q−1 (k) a (P,Q)-disagreement node iff
P
(
Q−1 (k − 1)

)
> P

(
Q−1 (k)

)
.
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Pedestals

Given the pair P,Q, we define the function qPQ on the rectangle
n ×m by

qPQ
(
Q−1 (k)

)
=

= #
{
l : l ≤ k ,Q−1 (l) is a (P,Q) -disagreement node

}
.

Clearly, the function qPQ is non-decreasing on the rectangle. It is
called the pedestal of Q with respect to P. Let EP denotes the set
of all pedestals qPQ .
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Pedestals

Theorem

There is a bijection between the set Pn,m of nondecreasing
functions (i.e. 3D diagrams) and the direct product EP × Ynm,
respecting the volumes.

It is given by the following construction: to each pedestal qPQ and
each partition π (i.e. 2D diagram) it corresponds the following
function p on n ×m :

p
(
Q−1 (k)

)
= qPQ

(
Q−1 (k)

)
+ π (k) , k = 1, ...,mn.

Clearly, the function thus defined is non-decreasing on the
rectangle n ×m.
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Pedestals

Therefore we have to fix some ordering P on the rectangle n ×m,
consider all the pedestals qPQ , and take the generating function

ΠP (t) =
∑
Q

tv(qPQ)

(in fact, generating polynomial) of the sequence of the number of
pedestals with a given volume. Then we have the identity:

Gn×m (t) = ΠP (t)Gnm (t) ≡ ΠP (t)
nm∏
l=1

1

1− t l
.

In particular, the polynomial ΠP (t) does not depend on P, and
thus can be denoted by Πn×m (t) .
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Pedestals

In particular, we have
Πn×m (t) =

=

∏nm
l=1 (1− t l)∏n

l=1

∏m
s=1 (1− t l+s−1)

,

i.e. we see fine cancellations here.
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Partition (3,2)

The standard tableaux are

1 3 5

2 4

1 2 5

3 4

1 3 4

2 5

1 2 4

3 5

1 2 3

4 5
, , , , .
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Pedestal matrix

Senya Shlosman PCA 2024



Eigenvalues
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Pedestal polynomials

The fact that the function ΠP (t) does not depend on the order P
on our rectangle has the following generalization. Instead of
characterizing the pedestal qPQ just by its volume let us associate
with it the monomial

mPQ (x1, x2, x3, ...) = x l1−1
1 x l2−l1

2 ...x
lr−lr−1
r xn−lr+1

r+1 ,

where r is the number of (P,Q)-disagreement nodes, and l1, ..., lr
are their locations. Note that mPQ

(
1, t, t2, ...

)
= tv(qPQ).
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Pedestal polynomials

We have shown with Oleg Ogievetsky that the polynomial

hP (x1, x2, x3, ...) =
∑
Q

mPQ (x1, x2, x3, ...)

is also independent of P, so it can be denoted as
hn×m (x1, x2, x3, ...) .
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Pedestal matrices

We will go to the general case. Instead of the partially ordered set
– the rectangle n ×m – we will consider any finite poset X . We
will denote by TotX the set of all possible linear orders on X .
One way of expressing the property that hP , P ∈ TotX depends
only on X is to say that the matrix MX of size |TotX | × |TotX | ,
with entries (MX )PQ = mPQ (x1, x2, x3, ...) is stochastic, i.e. the
vector (1, 1, ..., 1) is the right eigenvector, with the eigenvalue
hX (x1, x2, x3, ...) . The matrix MX is the pedestal matrix.
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Pedestal matrices

Theorem

(Richard Kenyon, Maxim Konsevich, Oleg Ogievetsky, Cosmin
Pohoata, Will Sawin, S.S.)
For every poset X , all the eigenvalues of the |TotX |× |TotX |-matrix
MX with entries (MX )PQ = mPQ (x1, x2, x3, ...) are polynomials in
x1, x2, x3, ... with integer coefficients.
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Pedestal matrices - Example

Partition (3,2,1):
□□□
□□
□
The 16 standard tableaux (i.e. the orders P,Q on our Young
tableau) are

{1, 4, 6, 2, 5, 3} , {1, 3, 6, 2, 5, 4} , {1, 2, 6, 3, 5, 4} , {1, 3, 6, 2, 4, 5} ,
{1, 2, 6, 3, 4, 5} , {1, 4, 5, 2, 6, 3} , {1, 3, 5, 2, 6, 4} , {1, 2, 5, 3, 6, 4} ,
{1, 3, 4, 2, 6, 5} , {1, 2, 4, 3, 6, 5} , {1, 2, 3, 4, 6, 5} , {1, 3, 5, 2, 4, 6} ,
{1, 2, 5, 3, 4, 6} , {1, 3, 4, 2, 5, 6} , {1, 2, 4, 3, 5, 6} , {1, 2, 3, 4, 5, 6} .
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Pedestal matrices

To save the space we write down the pedestal matrix in which the
replacement

(x61 , x
5
1x2, x

4
1x

2
2 , x

4
1x2x3, x

3
1x

3
2 , x

3
1x

2
2x3, x

2
1x

4
2 , x

2
1x

3
2x3, x

2
1x

2
2x

2
3 , x

2
1x

2
2x3x4) →

(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)

is made.
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The matrix



a1 a5 a7 a3 a9 a2 a6 a8 a3 a9 a5 a2 a8 a4 a10 a6
a5 a1 a7 a3 a9 a6 a2 a8 a3 a9 a5 a2 a8 a4 a10 a6
a5 a7 a1 a9 a3 a6 a8 a2 a9 a3 a5 a8 a2 a10 a4 a6
a5 a3 a9 a1 a7 a6 a2 a8 a4 a10 a6 a2 a8 a3 a9 a5
a5 a9 a3 a7 a1 a6 a8 a2 a10 a4 a6 a8 a2 a9 a3 a5
a2 a6 a8 a3 a9 a1 a5 a7 a3 a9 a5 a4 a10 a2 a8 a6
a6 a2 a8 a3 a9 a5 a1 a7 a3 a9 a5 a4 a10 a2 a8 a6
a6 a8 a2 a9 a3 a5 a7 a1 a9 a3 a5 a10 a4 a8 a2 a6
a6 a2 a8 a4 a10 a5 a3 a9 a1 a7 a5 a3 a9 a2 a8 a6
a6 a8 a2 a10 a4 a5 a9 a3 a7 a1 a5 a9 a3 a8 a2 a6
a6 a8 a2 a10 a4 a5 a9 a3 a7 a5 a1 a9 a3 a8 a6 a2
a5 a3 a9 a2 a8 a6 a4 a10 a2 a8 a6 a1 a7 a3 a9 a5
a5 a9 a3 a8 a2 a6 a10 a4 a8 a2 a6 a7 a1 a9 a3 a5
a6 a4 a10 a2 a8 a5 a3 a9 a2 a8 a6 a3 a9 a1 a7 a5
a6 a10 a4 a8 a2 a5 a9 a3 a9 a2 a6 a9 a3 a7 a1 a5
a6 a10 a4 a8 a2 a5 a9 a3 a8 a6 a2 a9 a3 a7 a5 a1



.
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The eigenvalues

(a1−a4−a7+a10)3 , a1−a4+a7−a10 , (a1+a2−a5−a6)2 , (a1−a2−a5+a6)2 ,

(a1−a2−a3+a4+a7−a8−a9+a10)2 , (a1−a2−a3+a4−a7+a8+a9−a10)2 ,

(a1−a4+a5−a6+a7−a10)2 , a1+2a2+2a3+a4−a7−2a8−2a9−a10 ,

a1 + 2a2 + 2a3 + 2a5 + 2a6 + a7 + 2a8 + 2a9 + a10 .
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Pedestal matrices

The plan of the proof :

1 We introduce the class of certain matrices MF , such that the
matrix MX can be written as a linear combination of MF -s
with integer coefficients.

2 We show that all MF -s can be made upper-triangular via the
conjugation with the same matrix, and the resulting
upper-triangular matrices have integer entries on the diagonal.
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The filters F

A filter F is a surjective map F : X → [1, 2, ..., k] , k ≤ n, such
that if αi ≼ αj then F (αi ) ≤ F (αj). (For k = n a filter is the
same as a linear order.) For b1, ..., br being integers summing up
to n we denote by Fb1,...,br the set of all filters F : X → [1, 2, ..., r ]
such that

∣∣F−1 (i)
∣∣ = bi for all i = 1, ..., r .
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The filters F

Let P be a linear order on X and F a filter on X . We define a
linear order Q (P,F ) by the relations:

1 for αi , αj in the same strata, i.e. F (αi ) = F (αj) we have
Q (αi ) < Q (αj) iff P (αi ) < P (αj) .

2 for αi , αj in different stratas we have Q (αi ) < Q (αj) iff
F (αi ) < F (αj) .
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The filters F

We define the matrix MF by

(MF )PQ =

{
1 if Q = Q (P,F )
0 in all other cases

.

In particular, the matrix MF has exactly one non-zero entry in
every row.
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The filter semigroup and the face semigroup

The central real hyperplane arrangement An (braid arrangement)
of hyperplanes {Hij : 1 ≤ i < j ≤ n} in Rn defined by

Hij = {(x1, ..., xn) : xi = xj}

A chamber is an open connected component of

Rn \ {∪Hij}

A cone is a union of closures of chambers, which is convex.
O (n) is the set of all different cones.
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Let a poset X of n elements be given, with a binary relation ≼. To
every pair i , j ∈ X such that

i ≼ j

there corresponds a half-space Kij = {xi ≤ xj} ⊂ Rn.
Consider the cone

A (X ,≼) =

 ⋂
i ,j :i≼j

Kij

 ∈ O (n)

where the intersection is taken over all pairs i , j such that i ≼ j .
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The above defined correspondence (X ,≼) → A (X ,≼) is a
one-to-one correspondence between the set of all partial orders on
{1, 2, ..., n} and the set of all (convex) cones O (n).
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n = 4

Figure: The central real hyperplane arrangement A4 in R4, projected to R3

along the line x = y = z = t and intersected with the sphere S2 ⊂ R3.
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n = 4

A partition of S2 into 24 equal triangles
(
π
2 ,

π
3 ,

π
3

)
. Convex unions

are: the sphere, the hemisphere, the moon, an elementary triangle
(e-triangle), a pair of e-riangles with a common side, a triangle
made from three e-triangles, a ‘square’ formed by four e-triangles,
a triangle made from a ‘square’ and a fifth adjacent e-triange, a
triangle formed by six e-triangles with a common π

3 -vertex. Their
numbers are 1, 12, 60, 24, 36, 48, 6, 24, 8, totally 219. This is
precisely the number of partial orders on the set of four distinct
elements.
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Face-product

Let f ′, f ′′ be two faces in A(X ) = A (X ,≼) . Define the face
f = f ′′ (f ′) ∈ A (X ) – or the face-product f ′′f ′:
Choose points x ′ ∈ f ′, x ′′ ∈ f ′′ in general position.
Let sx ′x ′′ : [0, 1] → Rn be a linear segment, sx ′x ′′ (0) = x ′,
sx ′x ′′ (1) = x ′′.
Consider the face f ∈ A (X ) containing all the points sx ′x ′′ (1− ε)
of the segment for ε > 0 small enough.
By definition, f ′′ (f ′) = f .
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Face-product
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Face-product

If f ′′ is a chamber then f ′′f ′ = f ′′.
If f ′′ is a chamber then f ′f ′′ is also a chamber, so the faces are
acting on chambers.
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Semigroup

The face-product is associative.
For every choice of faces f , g , h ∈ A (X ,≼) we have

f (gh) = (fg) h,
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Left-regular bands

The semigroup A (X ,≼) is a left-regular band :

ff = f ,

fgf = fg .

The semigroup A (X ,≼) defines back the poset X .
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Filters and Faces

Let F be a filter on X of rank k , i.e. a surjective map
F : X → {1, ..., k} , preserving the partial order, and let

{b1, ..., bj1} , {bj1+1, ..., bj2} , ...,
{
bjk−1+1, ..., bjk

}
⊂ X

be its ‘floors’:{
bjr−1+1, ..., bjr

}
= F−1 (r) , r = 1, ..., k.

Consider the face fF ∈ A (X ,≼) , defined by the equations

xbjr−1+1
= ... = xbjr , r = 1, ..., k

and inequalities

xbj1 < xbj2 < ... < xbjk .

This is a one-to-one correspondence between faces and filters. The
filters of the highest rank n, i.e. the linear extensions of ≼,
correspond to the chambers.
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Filters and Faces

The corresponding filter-product looks as follows. For F ′, F ′′ being
two filters of X , the filter F = F ′′F ′ on X is uniquely defined by
the following properties:

For u, v with F ′′ (u) < F ′′ (v) we have F (u) < F (v) .

For u, v with F ′′ (u) = F ′′ (v) we have F (u) < F (v) iff
F ′ (u) < F ′ (v) .
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Filters and Faces

Let F be a filter on X , and P is some filter of rank n, i.e. a linear
order on X . Then the filter FP is again a filter of rank n. Consider

the square matrix MX
F =

∥∥∥(MX
F

)
P,Q

∥∥∥ where P,Q are linear orders

on X : (
MX

F

)
P,Q

=

{
1 if Q = FP
0 if Q ̸= FP

.

The operators MX
F play a central role in our proof.
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The filters F – back to pedestals

Let us rewrite our pedestal matrix MX as the sum over all
monomials,

MX =
n∑

r=1

∑
a1,...,ar≥1

a1+...+ar=n

xa11 ...xarr Ba1,...,ar ,

where the entries of each matrix Ba1,...,ar are 0 or 1.
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The filters F

We claim that if Ba1,...,ar ̸= 0 then the following inclusion-exclusion
identity holds:

Ba1,...,ar =
∑

F∈Fa1,...,ar

MF −

 ∑
F∈Fa1+a2,a3,...,ar∪
∪Fa1,a2+a3,...,ar∪...

MF

 (1)

+

 ∑
F∈Fa1+a2+a3,a4,...,ar∪
∪Fa1+a2,a3+a4,...,ar∪...

MF

− ...

where the sums are taken over all possible mergers of neighboring
indices ai , and the signs are (−1)#mergers .
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The filters F

Indeed, an order Q from the row P from the lhs, agrees with P
over the first a1 − 1 locations, then disagrees once, then agrees
again over next a2 − 1 locations, then disagrees once again, etc.
An order Q from the row P which appears in the rhs and
corresponds to the first sum, agrees with P over the first a1 − 1
locations, then it agrees or disagrees once, then agrees again
over next a2 − 1 locations, then agrees or disagrees once again,
etc. Therefore we have to remove all these Q-s which agrees with
P over the first a1 − 1 locations, then agrees once again, then
agrees also over next a2 − 1 locations, etc.
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Conjugation

Our matrices MF ,X are of the size |TotX | × |TotX |. Let us now
abolish all order relations on X , getting the poset X̄ with
|TotX̄ | = n! . Of course, MF ,X is a submatrix of MF ,X̄ .
Let it be an upper-left submatrix.
To the right of it all matrix elements of MF ,X̄ are zero, and so
MF ,X is a block of MF ,X̄ . Indeed, each row of MF ,X̄ has exactly
one 1, and the rest are 0-s. But each row of MF ,X already has one
1. So it is sufficient to know that the spectrum of MF ,X̄ consists of
integers.
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Conjugation

We will deal only with ‘totally unordered’ poset X̄ .

Let us consider an even bigger matrices, MF ,T , of size 2n(n−1)/2.
Here T stays for tournaments between n entries.

A tournament is an assignment of the order ≼ to every pair i ̸= j
of the elements of the set [1, ..., n] , independently for each pair.
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Conjugation

If we have a tournament ≼ and a filter F then we define a new
tournament ≼Fby the rule:

1 If F (i) = F (j) then i ≼F j iff i ≼ j ,

2 If F (i) < F (j) then i ≼F j .

Any linear order defines a tournament in an obvious way, so our
matrices MF ,X are blocks of MF ,T -s, and it is sufficient to study
MF ,T -s.
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Conjugation

The key observation: MF ,T is a tensor product of n (n − 1) /2
two-by-two matrices, corresponding to all pairs (i , j) , since the
orders ≼ can be assigned to the pairs independently.

Since the tensor product of upper triangular matrices is upper
triangular, it is sufficient to check our claim just for the filters and
tournaments in the case n = 2.
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Conjugation

The three possible MF ,T -s in this case are

M1 :=

(
1 0
1 0

)
,M2 :=

(
1 0
0 1

)
, and M3 :=

(
0 1
0 1

)
.
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Conjugation

Conjugating them by the discrete Fourier transform matrix

U = 1√
2

(
1 1
1 −1

)
brings them to the triple of upper tirangular

matrices: UM1U
−1 =

(
1 1
0 0

)
,UM2U

−1 =

(
1 0
0 1

)
, and

UM3U
−1 =

(
1 −1
0 0

)
. That finishes the proof.
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